immposible

very goooooooooooooood

Saturday, August 6, 2011

Craig's Soil Mechanics

download :
 
http://www.4shared.com/document/cyecJflo/Craigs_Soil_Mechanics.html

dam




A dam is a barrier that impounds water or underground streams. Dams generally serve the primary purpose of retaining water, while other structures such as floodgates or levees (also known as dikes) are used to manage or prevent water flow into specific land regions. Hydropower and pumped-storage hydroelectricity are often used in conjunction with dams to provide generate electricity. A dam can also be used to collect water or for storage of water which can be evenly distributed between locations.



History

The word dam can be traced back to Middle English,[1] and before that, from Middle Dutch, as seen in the names of many old cities.

Most early dam building took place in Mesopotamia and the Middle East. Dams were used to control the water level, for Mesopotamia's weather affected the Tigris and Euphrates rivers, and could be quite unpredictable.

The earliest known dam is the Jawa Dam in Jordan, 100 km northeast of the capital Amman. This gravity dam featured a 4.5 m high and 1 m wide stone wall, supported by a 50 m wide earth rampart. The structure is dated to 3000 BC. The Ancient Egyptian Sadd-el-Kafara Dam at Wadi Al-Garawi, located about 25 kilometers south of Cairo, was 102 m long at its base and 87 m wide. The structure was built around 2800 or 2600 B.C. as a diversion dam for flood control, but was destroyed by heavy rain during construction or shortly afterwards.

Roman dam construction was characterized by "the Romans' ability to plan and organize engineering construction on a grand scale". Roman planners introduced the then novel concept of large reservoir dams which could secure a permanent water supply for urban settlements also over the dry season. Their pioneering use of water-proof hydraulic mortar and particularly Roman concrete allowed for much larger dam structures than previously built, such as the Lake Homs Dam, possibly the largest water barrier to date, and the Harbaqa Dam, both in Roman Syria. The highest Roman dam was the Subiaco Dam near Rome; its record height of 50 m remained unsurpassed until its accidental destruction in 1305.

Roman engineers made routine use of ancient standard designs like embankment dams and masonry gravity dams. Apart from that, they displayed a high degree of inventiveness, introducing most of the other basic dam designs which had been unknown until then. These include arch-gravity dams, arch dams, buttress dams and multiple arch buttress dams, all of which were known and employed by the 2nd century AD (see List of Roman dams). Roman workforces also were the first to built dam bridges, such as the Bridge of Valerian in Iran.

Eflatun Pinar is a Hittite dam and spring temple near Konya, Turkey. It's thought to the time of the Hittite empire between the 15th and 13 century BC.

The Kallanai is a massive dam of unhewn stone, over 300 meters long, 4.5 meters high and 20 meters (60 ft) wide, across the main stream of the Kaveri river in Tamil Nadu, South India. The basic structure dates to the 1st century AD. and is considered one of the oldest water-diversion or water-regulator structures in the world, which is still in use. The purpose of the dam was to divert the waters of the Kaveri across the fertile Delta region for irrigation via canals.

Du Jiang Yan is the oldest surviving irrigation system in China that included a dam that directed waterflow. It was finished in 251 B.C. A large earthen dam, made by the Prime Minister of Chu (state), Sunshu Ao, flooded a valley in modern-day northern Anhui province that created an enormous irrigation reservoir (62 miles in circumference), a reservoir that is still present today.

In Iran, bridge dams such as the Band-e Kaisar were used to provide hydropower through water wheels, which often powered water-raising mechanisms. One of the first was the Roman-built dam bridge in Dezful, which could raise 50 cubits of water for the water supply to all houses in the town. Also diversion dams were known. Milling dams were introduced which the Muslim engineers called the Pul-i-Bulaiti. The first was built at Shustar on the River Karun, Iran, and many of these were later built in other parts of the Islamic world. Water was conducted from the back of the dam through a large pipe to drive a water wheel and watermill. In the 10th century, Al-Muqaddasi described several dams in Persia. He reported that one in Ahwaz was more than 3,000 feet long, and that and it had many water-wheels raising the water into aqueducts through which it flowed into reservoirs of the city. Another one, the Band-i-Amir dam, provided irrigation for 300 villages.

In the Netherlands, a low-lying country, dams were often applied to block rivers in order to regulate the water level and to prevent the sea from entering the marsh lands. Such dams often marked the beginning of a town or city because it was easy to cross the river at such a place, and often gave rise to the respective place's names in Dutch. For instance the Dutch capital Amsterdam (old name Amstelredam) started with a dam through the river Amstel in the late 12th century, and Rotterdam started with a dam through the river Rotte, a minor tributary of the Nieuwe Maas. The central square of Amsterdam, covering the original place of the 800 year old dam, still carries the name Dam Square or simply the Dam.

The age of hydropower and large dams emerged following the development of the turbine. French engineer Benoît Fourneyron perfected the first water turbine in 1832. The era of mega-dam building was initiated after Hoover Dam was completed on the Colorado River in 1936. By 1997, there were an estimated 800,000 dams worldwide, some 40,000 of them over fifteen meters high.
Types of dams
Dams can be formed by human agency, natural causes, or even by the intervention of wildlife such as beavers. Man-made dams are typically classified according to their size (height), intended purpose or structure.
By size

International standards (including International Commission on Large Dams, ICOLD) define large dams as higher than 15 meters and major dams as over 150 meters in height.[26] The Report of the World Commission on Dams also includes in the large category, dams, such as Barrages, which are between 5 and 15 meters high with a reservoir capacity of more than 3 million cubic meters.

The tallest dam in the world is the 300-meter-high Nurek Dam in Tajikistan.

Intended purposes include providing water for irrigation to a town or city water supply, improving navigation, creating a reservoir of water to supply industrial uses, generating hydroelectric power, creating recreation areas or habitat for fish and wildlife, retaining wet season flow to minimise downstream flood risk and containing effluent from industrial sites such as mines or factories. Some dams can also serve as pedestrian or vehicular bridges across the river as well. When used in conjunction with intermittent power sources such as wind or solar, the reservoir can serve as pumped water storage to facilitate base load dampening in the power grid. Few dams serve all of these purposes but some multi-purpose dams serve more than one.

A saddle dam is an auxiliary dam constructed to confine the reservoir created by a primary dam either to permit a higher water elevation and storage or to limit the extent of a reservoir for increased efficiency. An auxiliary dam is constructed in a low spot or saddle through which the reservoir would otherwise escape. On occasion, a reservoir is contained by a similar structure called a dike to prevent inundation of nearby land. Dikes are commonly used for reclamation of arable land from a shallow lake. This is similar to a levee, which is a wall or embankment built along a river or stream to protect adjacent land from flooding.

An overflow dam is designed to be over topped. A weir is a type of small overflow dam that are often used within a river channel to create an impoundment lake for water abstraction purposes and which can also be used for flow measurement.

A check dam is a small dam designed to reduce flow velocity and control soil erosion. Conversely, a wing dam is a structure that only partly restricts a waterway, creating a faster channel that resists the accumulation of sediment.

A dry dam is a dam designed to control flooding. It normally holds back no water and allows the channel to flow freely, except during periods of intense flow that would otherwise cause flooding downstream.

A diversionary dam is a structure designed to divert all or a portion of the flow of a river from its natural course.
By structure

Based on structure and material used, dams are classified as timber dams, arch-gravity dams, embankment dams or masonry dams, with several subtypes.
Masonry and concrete dams
Arch dams

In the arch dam, stability is obtained by a combination of arch and gravity action. If the upstream face is vertical the entire weight of the dam must be carried to the foundation by gravity, while the distribution of the normal hydrostatic pressure between vertical cantilever and arch action will depend upon the stiffness of the dam in a vertical and horizontal direction. When the upstream face is sloped the distribution is more complicated. The normal component of the weight of the arch ring may be taken by the arch action, while the normal hydrostatic pressure will be distributed as described above. For this type of dam, firm reliable supports at the abutments (either buttress or canyon side wall) are more important. The most desirable place for an arch dam is a narrow canyon with steep side walls composed of sound rock. The safety of an arch dam is dependent on the strength of the side wall abutments, hence not only should the arch be well seated on the side walls but also the character of the rock should be carefully inspected.

Two types of single-arch dams are in use, namely the constant-angle and the constant-radius dam. The constant-radius type employs the same face radius at all elevations of the dam, which means that as the channel grows narrower towards the bottom of the dam the central angle subtended by the face of the dam becomes smaller. Jones Falls Dam, in Canada, is a constant radius dam. In a constant-angle dam, also known as a variable radius dam, this subtended angle is kept a constant and the variation in distance between the abutments at various levels are taken care of by varying the radii. Constant-radius dams are much less common than constant-angle dams. Parker Dam is a constant-angle arch dam

A similar type is the double-curvature or thin-shell dam. Wildhorse Dam near Mountain City, Nevada in the United States is an example of the type. This method of construction minimizes the amount of concrete necessary for construction but transmits large loads to the foundation and abutments. The appearance is similar to a single-arch dam but with a distinct vertical curvature to it as well lending it the vague appearance of a concave lens as viewed from downstream.

The multiple-arch dam consists of a number of single-arch dams with concrete buttresses as the supporting abutments, as for example the Daniel-Johnson Dam, Québec, Canada. The multiple-arch dam does not require as many buttresses as the hollow gravity type, but requires good rock foundation because the buttress loads are heavy.

In a gravity dam, stability is secured by making it of such a size and shape that it will resist overturning, sliding and crushing at the toe. The dam will not overturn provided that the moment around the turning point, caused by the water pressure, is smaller than the moment caused by the weight of the dam. This is the case if the resultant force of water pressure and weight falls within the base of the dam. However, in order to prevent tensile stress at the upstream face and excessive compressive stress at the downstream face, the dam cross section is usually designed so that the resultant falls within the middle at all elevations of the cross section (the core). For this type of dam, impervious foundations with high bearing strength are essential.

When situated on a suitable site, gravity dams can prove to be a better alternative to other types of dams. When built on a carefully studied foundation, the gravity dam probably represents the best developed example of dam building. Since the fear of flood is a strong motivator in many regions, gravity dams are being built in some instances where an arch dam would have been more economical.

Gravity dams are classified as "solid" or "hollow" and are generally made of either concrete or masonry. This is called "Zoning". The core of the dam is zoned depending on the availability of locally available materials, foundation conditions and the material attributes. The solid form is the more widely used of the two, though the hollow dam is frequently more economical to construct. Gravity dams can also be classified as "overflow" (spillway) and "non-overflow." Grand Coulee Dam is a solid gravity dam and Itaipu Dam is a hollow gravity dam. A gravity dam can be combined with an arch dam, an arch-gravity dam, for areas with massive amounts of water flow but less material available for a purely gravity dam.
Embankment dams

Embankment dams are made from compacted earth, and have two main types, rock-fill and earth-fill dams. Embankment dams rely on their weight to hold back the force of water, like the gravity dams made from concrete.
Rock-fill dams

Rock-fill dams are embankments of compacted free-draining granular earth with an impervious zone. The earth utilized often contains a large percentage of large particles hence the term rock-fill. The impervious zone may be on the upstream face and made of masonry, concrete, plastic membrane, steel sheet piles, timber or other material. The impervious zone may also be within the embankment in which case it is referred to as a core. In the instances where clay is utilized as the impervious material the dam is referred to as a composite dam. To prevent internal erosion of clay into the rock fill due to seepage forces, the core is separated using a filter. Filters are specifically graded soil designed to prevent the migration of fine grain soil particles. When suitable material is at hand, transportation is minimized leading to cost savings during construction. Rock-fill dams are resistant to damage from earthquakes. However, inadequate quality control during construction can lead to poor compaction and sand in the embankment which can lead to liquefaction of the rock-fill during an earthquake. Liquefaction potential can be reduced by keeping susceptible material from being saturated, and by providing adequate compaction during construction. An example of a rock-fill dam is New Melones Dam in California.
Earth-fill dams



Earth-fill dams, also called earthen, rolled-earth or simply earth dams, are constructed as a simple embankment of well compacted earth. A homogeneous rolled-earth dam is entirely constructed of one type of material but may contain a drain layer to collect seep water. A zoned-earth dam has distinct parts or zones of dissimilar material, typically a locally plentiful shell with a watertight clay core. Modern zoned-earth embankments employ filter and drain zones to collect and remove seep water and preserve the integrity of the downstream shell zone. An outdated method of zoned earth dam construction utilized a hydraulic fill to produce a watertight core. Rolled-earth dams may also employ a watertight facing or core in the manner of a rock-fill dam. An interesting type of temporary earth dam occasionally used in high latitudes is the frozen-core dam, in which a coolant is circulated through pipes inside the dam to maintain a watertight region of permafrost within it.

Tarbela Dam is a large dam on the Indus River in Pakistan. It is located about 50 km (31 mi) northwest of Islamabad, and a height of 485 ft (148 m) above the river bed and a reservoir size of 95 sq mi (250 km2) makes it the largest earth filled dam in the world. The principal element of the project is an embankment 9,000 feet (2743 meters) long with a maximum height of 465 feet (143 meters). The total volume of earth and rock used for the project is approximately 200 million cubic yards (152.8 million cu. Meters) which makes it the largest man made structure in the world , except for the Great Chinese Wall which consumed somewhat more material.

Because earthen dams can be constructed from materials found on-site or nearby, they can be very cost-effective in regions where the cost of producing or bringing in concrete would be prohibitive.
Asphalt-concrete core

A third type of embankment dam is built with asphalt concrete core. The majority of such dams are built with rock and/or gravel as the main fill material. Almost 100 dams of this design have now been built worldwide since the first such dam was completed in 1962. All asphalt-concrete core dams built so far have an excellent performance record. The type of asphalt used is a viscoelastic-plastic material that can adjust to the movements and deformations imposed on the embankment as a whole, and to settlements in the foundation. The flexible properties of the asphalt make such dams especially suited in earthquake regions.
Cofferdams

A cofferdam is a (usually temporary) barrier constructed to exclude water from an area that is normally submerged. Made commonly of wood, concrete or steel sheet piling, cofferdams are used to allow construction on the foundation of permanent dams, bridges, and similar structures. When the project is completed, the cofferdam may be demolished or removed. See also causeway and retaining wall. Common uses for cofferdams include construction and repair of off shore oil platforms. In such cases the cofferdam is fabricated from sheet steel and welded into place under water. Air is pumped into the space, displacing the water allowing a dry work environment below the surface. Upon completion the cofferdam is usually deconstructed unless the area requires continuous maintenance.

Timber dams were widely used in the early part of the industrial revolution and in frontier areas due to ease and speed of construction. Rarely built in modern times by humans because of relatively short lifespan and limited height to which they can be built, timber dams must be kept constantly wet in order to maintain their water retention properties and limit deterioration by rot, similar to a barrel. The locations where timber dams are most economical to build are those where timber is plentiful, cement is costly or difficult to transport, and either a low head diversion dam is required or longevity is not an issue. Timber dams were once numerous, especially in the North American west, but most have failed, been hidden under earth embankments or been replaced with entirely new structures. Two common variations of timber dams were the crib and the plank.

Timber crib dams were erected of heavy timbers or dressed logs in the manner of a log house and the interior filled with earth or rubble. The heavy crib structure supported the dam's face and the weight of the water. Splash dams were timber crib dams used to help float logs downstream in the late 19th and early 20th centuries.

Timber plank dams were more elegant structures that employed a variety of construction methods utilizing heavy timbers to support a water retaining arrangement of planks.

Very few timber dams are still in use. Timber, in the form of sticks, branches and withes, is the basic material used by beavers, often with the addition of mud or stones.
Steel dams

A steel dam is a type of dam briefly experimented with in around the turn of the 19th-20th Century which uses steel plating (at an angle) and load bearing beams as the structure. Intended as permanent structures, steel dams were an (arguably failed) experiment to determine if a construction technique could be devised that was cheaper than masonry, concrete or earthworks, but sturdier than timber crib dams.


Beaver dams

Beavers create dams primarily out of mud and sticks to flood a particular habitable area. By flooding a parcel of land, beavers can navigate below or near the surface and remain relatively well hidden or protected from predators. The flooded region also allows beavers access to food, especially during the winter.
Construction elements
Power generation plant

As of 2005, hydroelectric power, mostly from dams, supplies some 19% of the world's electricity, and over 63% of renewable energy. Much of this is generated by large dams, although China uses small scale hydro generation on a wide scale and is responsible for about 50% of world use of this type of power.

Most hydroelectric power comes from the potential energy of dammed water driving a water turbine and generator; to boost the power generation capabilities of a dam, the water may be run through a large pipe called a penstock before the turbine. A variant on this simple model uses pumped storage hydroelectricity to produce electricity to match periods of high and low demand, by moving water between reservoirs at different elevations. At times of low electrical demand, excess generation capacity is used to pump water into the higher reservoir. When there is higher demand, water is released back into the lower reservoir through a turbine
Spillways

A spillway is a section of a dam designed to pass water from the upstream side of a dam to the downstream side. Many spillways have floodgates designed to control the flow through the spillway. Types of spillway include: A service spillway or primary spillway passes normal flow. An auxiliary spillway releases flow in excess of the capacity of the service spillway. An emergency spillway is designed for extreme conditions, such as a serious malfunction of the service spillway. A fuse plug spillway is a low embankment designed to be over topped and washed away in the event of a large flood. Fusegate elements are independent free-standing block set side by side on the spillway which work without any remote control. They allow to increase the normal pool of the dam without compromising the security of the dam because they are designed to be gradually evacuated for exceptional events. They work as fixed weir most of the time allowing overspilling for the common floods.

The spillway can be gradually eroded by water flow, including cavitation or turbulence of the water flowing over the spillway, leading to its failure. It was the inadequate design of the spillway which led to the 1889 over-topping of the South Fork Dam in Johnstown, Pennsylvania, resulting in the infamous Johnstown Flood (the "great flood of 1889").

Erosion rates are often monitored, and the risk is ordinarily minimized, by shaping the downstream face of the spillway into a curve that minimizes turbulent flow, such as an ogee curve.
Dam creation
Common purposes
Function


Example
Power generation


Hydroelectric power is a major source of electricity in the world. Many countries that have rivers with adequate water flow, that can be dammed for power generation purposes. For example, the Itaipu on the Paraná River in South America generates 14 GW and supplied 93% of the energy consumed by Paraguay and 20% of that consumed by Brazil as of 2005.
Water supply


Many urban areas of the world are supplied with water abstracted from rivers pent up behind low dams or weirs. Examples include London - with water from the River Thames and Chester with water taken from the River Dee. Other major sources include deep upland reservoirs contained by high dams across deep valleys such as the Claerwen series of dams and reservoirs.
Stabilize water flow / irrigation


Dams are often used to control and stabilize water flow, often for agricultural purposes and irrigation.[31] Others such as the Berg Strait dam can help to stabilize or restore the water levels of inland lakes and seas, in this case the Aral Sea.[32]
Flood prevention


Dams such as the Blackwater dam of Webster, New Hampshire and the Delta Works are created with flood control in mind.[33]
Land reclamation


Tuesday, July 26, 2011

Concrete



Concrete is a construction material composed of cement (commonly Portland cement) as well as other cementitious materials such as fly ash and slag cement, aggregate(generally a coarse aggregate such as gravel, limestone, or granite, plus a fine aggregate such as sand), water, and chemical admixtures



Concrete is a construction material composed of cement (commonly Portland cement) as well as other cementitious materials such as fly ash and slag cement, aggregate(generally a coarse aggregate such as gravel, limestone, or granite, plus a fine aggregate such as sand), water, and chemical admixtures. The word concrete comes from the Latin word "concretus" (meaning compact or condensed), the past participle of "concresco", from "com-" (together) and "cresco" (to grow).
Concrete solidifies and hardens after mixing with water and placement due to a chemical process known as hydration. The water reacts with the cement, which bonds the other components together, eventually creating a stone-like material. Concrete is used to make pavements, pipe, architectural structures, foundations, motorways/roads,bridges/overpasses, parking structures, brick/block walls and footings for gates, fencesand poles.
Concrete is used more than any other man-made material in the world.[1] As of 2006, about 7.5 cubic kilometres of concrete are made each year—more than one cubic metre for every person on Earth.[2] Concrete powers a US $35-billion industry which employs more than two million workers in the United States alone.[citation needed] More than 55,000 miles (89,000 km) of highways in the United States are paved with this material.Reinforced concrete and prestressed concrete are the most widely used modern kinds of concrete functional extensions.

History
During the Roman Empire, Roman concrete (or Opus caementicium) was made fromquicklime, pozzolanic ash/pozzolana, and an aggregate of pumice. Its widespread use in many Roman structures, a key event in the history of architecture termed the Concrete Revolution, freed Roman construction from the restrictions of stone and brick material and allowed for revolutionarily new designs both in terms of structural complexity and dimension.[4]
Concrete, as the Romans knew it, was in effect a new and revolutionary material. Laid in the shape ofarches, vaults and domes, it quickly hardened into a rigid mass, free from many of the internal thrusts and strains which trouble the builders of similar structures in stone or brick.[5]
Modern tests show Opus caementicium similarly strong as modern Portland cement concrete in its compressive strength (ca. 200 kg/cm2).[6] However, due to the absence of reinforced steel, its tensile strength was far lower and its mode of application was also different:
Modern structural concrete differs from Roman concrete in two important details. First, its mix consistency is fluid and homogeneous, allowing it to be poured into forms rather than requiring hand-layering together with the placement of aggregate, which, in Roman practice, often consisted of rubble. Second, integral reinforcing steel gives modern concrete assemblies great strength in tension, whereas Roman concrete could depend only upon the strength of the concrete bonding to resist tension.[7]
The widespread use of concrete in many Roman structures has ensured that many survive to the present day. The Baths of Caracalla in Rome are just one example of the longevity of concrete, which allowed the Romans to build this and similar structures across the Roman Empire. Many Roman aqueducts and Roman bridges have masonry cladding to a concrete core, a technique they used in structures such as the Pantheon, the dome of which is concrete.
The secret of concrete was lost for 13 centuries until 1756, when the British engineer John Smeatonpioneered the use of hydraulic lime in concrete, using pebbles and powdered brick as aggregate.Portland cement was first used in concrete in the early 1840s. This version of history has been challenged however, as the Canal du Midi was constructed using concrete in 1670.[8]
Recently, the use of recycled materials as concrete ingredients is gaining popularity because of increasingly stringent environmental legislation. The most conspicuous of these is fly ash, a by-product of coal-fired power plants. This has a significant impact by reducing the amount of quarrying and landfill space required, and, as it acts as a cement replacement, reduces the amount of cement required to produce a solid concrete.[citation needed]
Concrete additives have been used since Roman and Egyptian times, when it was discovered that adding volcanic ash to the mix allowed it to set under water. Similarly, the Romans knew that adding horse hair made concrete less liable to crack while it hardened, and adding blood made it more frost-resistant.[9]
In modern times, researchers have experimented with the addition of other materials to create concrete with improved properties, such as higher strength or electrical conductivity.

Composition
There are many types of concrete available, created by varying the proportions of the main ingredients below.
The mix design depends on the type of structure being built, how the concrete will be mixed and delivered, and how it will be placed to form this structure

Cement
Portland cement is the most common type of cement in general usage. It is a basic ingredient of concrete, mortar, and plaster. English engineer Joseph Aspdin patented Portland cement in 1824; it was named because of its similarity in colour to Portland limestone, quarried from the English Isle of Portlandand used extensively in London architecture. It consists of a mixture of oxides of calcium, silicon andaluminium. Portland cement and similar materials are made by heating limestone (a source of calcium) with clay, and grinding this product (called clinker) with a source of sulfate (most commonly gypsum). The manufacture of Portland cement creates about 5 percent of human CO2 emissions
Water
Combining water with a cementitious material forms a cement paste by the process of hydration. The cement paste glues the aggregate together, fills voids within it, and allows it to flow more freely.
Less water in the cement paste will yield a stronger, more durable concrete; more water will give an freer-flowing concrete with a higherslump.[11]
Impure water used to make concrete can cause problems when setting or in causing premature failure of the structure.
Hydration involves many different reactions, often occurring at the same time. As the reactions proceed, the products of the cement hydration process gradually bond together the individual sand and gravel particles, and other components of the concrete, to form a solid mass
Reaction:
Cement chemist notation: C3S + H ? C-S-H + CH
Standard notation: Ca3SiO5 + H2O ? (CaO)•(SiO2)•(H2O)(gel) + Ca(OH)2
Balanced: 2Ca3SiO5 + 7H2O ? 3(CaO)•2(SiO2)•4(H2O)(gel) + 3Ca(OH)2


Aggregates
Fine and coarse aggregates make up the bulk of a concrete mixture. Sand, natural gravel and crushed stone are mainly used for this purpose. Recycled aggregates (from construction, demolition and excavation waste) are increasingly used as partial replacements of natural aggregates, while a number of manufactured aggregates, including air-cooled blast furnace slag and bottom ash are also permitted.
Decorative stones such as quartzite, small river stones or crushed glass are sometimes added to the surface of concrete for a decorative "exposed aggregate" finish, popular among landscape designers.

Reinforcement
Concrete is strong in compression, as the aggregate efficiently carries the compression load. However, it is weak in tension as the cement holding the aggregate in place can crack, allowing the structure to fail. Reinforced concrete solves these problems by adding either metal reinforcing bars, steel fibers, glass fiber, or plastic fiber to carry tensile loads.

Chemical admixtures
Chemical admixtures are materials in the form of powder or fluids that are added to the concrete to give it certain characteristics not obtainable with plain concrete mixes. In normal use, admixture dosages are less than 5% by mass of cement, and are added to the concrete at the time of batching/mixing.[12] The most common types of admixtures[13] are:
§ Accelerators speed up the hydration (hardening) of the concrete. Typical materials used are CaCl2 and NaCl.However use of Chlorides may cause corrosion in steel reinforcing and is prohibited in some countries.
§ Acrylic retarders slow the hydration of concrete, and are used in large or difficult pours where partial setting before the pour is complete is undesirable. A typical retarder is table sugar, or sucrose (C12H22O11).
§ Air entrainments add and distribute tiny air bubbles in the concrete, which will reduce damage during freeze-thaw cycles thereby increasing the concrete's durability. However, entrained air is a trade-off with strength, as each 1% of air may result in 5% decrease in compressive strength.
§ Plasticizers (water-reducing admixtures) increase the workability of plastic or "fresh" concrete, allowing it be placed more easily, with less consolidating effort. Superplasticizers (high-range water-reducing admixtures) are a class of plasticizers which have fewer deleterious effects when used to significantly increase workability. Alternatively, plasticizers can be used to reduce the water content of a concrete (and have been called water reducers due to this application) while maintaining workability. This improves its strength and durability characteristics.
§ Pigments can be used to change the color of concrete, for aesthetics.
§ Corrosion inhibitors are used to minimize the corrosion of steel and steel bars in concrete.
§ Bonding agents are used to create a bond between old and new concrete.
§ Pumping aids improve pumpability, thicken the paste, and reduce dewatering – the tendency for the water to separate out of the paste.
Mineral admixtures and blended cements
There are inorganic materials that also have pozzolanic or latent hydraulic properties. These veryfine-grained materials are added to the concrete mix to improve the properties of concrete (mineral admixtures),[12] or as a replacement for Portland cement (blended cements).[14]
§ Fly ash: A by product of coal fired electric generating plants, it is used to partially replace Portland cement (by up to 60% by mass). The properties of fly ash depend on the type of coal burnt. In general, silicious fly ash is pozzolanic, while calcareous fly ash has latent hydraulic properties.[15]
§ Ground granulated blast furnace slag (GGBFS or GGBS): A by product of steel production, is used to partially replace Portland cement (by up to 80% by mass). It has latent hydraulic properties.[16]
§ Silica fume: A by-product of the production of silicon and ferrosilicon alloys. Silica fume is similar to fly ash, but has a particle size 100 times smaller. This results in a higher surface to volume ratio and a much faster pozzolanic reaction. Silica fume is used to increase strength and durability of concrete, but generally requires the use of superplasticizers for workability.[17]
§ High Reactivity Metakaolin (HRM): Metakaolin produces concrete with strength and durability similar to concrete made with silica fume. While silica fume is usually dark gray or black in color, high reactivity metakaolin is usually bright white in color, making it the preferred choice for architectural concrete where appearance is important.

Concrete production
The processes used vary dramatically, from hand tools to heavy industry, but result in the concrete being placed where it cures into a final form.
When initially mixed together, Portland cement and water rapidly form a gel, formed of tangled chains of interlocking crystals. These continue to react over time, with the initially fluid gel often aiding in placement by improving workability. As the concrete sets, the chains of crystals join up, and form a rigid structure, gluing the aggregate particles in place. During curing, more of the cement reacts with the residual water (Hydration).
This curing process develops physical and chemical properties. Among other qualities, mechanical strength, low moisture permeability, and chemical and volumetric stability.

Mixing concrete

Thorough mixing is essential for the production of uniform, high quality concrete. Therefore, equipment and methods should be capable of effectively mixing concrete materials containing the largest specified aggregate to produce uniform mixtures of the lowest slump practical for the work. Separate paste mixing has shown that the mixing of cement and water into a paste before combining these materials with aggregates can increase the compressive strength of the resulting concrete.[18] The paste is generally mixed in a high-speed, shear-type mixer at a w/cm (water to cement ratio) of 0.30 to 0.45 by mass. The cement paste premix may include admixtures, e.g. accelerators or retarders, plasticizers, pigments, or silica fume. The latter is added to fill the gaps between the cement particles. This reduces the particle distance and leads to a higher final compressive strength and a higher water impermeability.[19] The premixed paste is then blended with aggregates and any remaining batch water, and final mixing is completed in conventional concrete mixing equipment.[20]
High-Energy Mixed Concrete (HEM concrete) is produced by means of high-speed mixing of cement, water and sand with net specific energy consumption at least 5 kilojoules per kilogram of the mix. It is then added to a plasticizer admixture and mixed after that with aggregates in conventional concrete mixer. This paste can be used itself or foamed (expanded) for lightweight concrete.[21] Sand effectively dissipates energy in this mixing process. HEM concrete fast hardens in ordinary and low temperature conditions, and possesses increased volume of gel, drastically reducing capillarity in solid and porous materials. It is recommended for precast concrete in order to reduce quantity of cement, as well as for concrete roof and siding tiles, paving stones and lightweight concrete block production.

Workability

Workability is the ability of a fresh (plastic) concrete mix to fill the form/mold properly with the desired work (vibration) and without reducing the concrete's quality. Workability depends on water content, aggregate (shape and size distribution), cementitious content and age (level ofhydration), and can be modified by adding chemical admixtures. Raising the water content or adding chemical admixtures will increase concrete workability. Excessive water will lead to increased bleeding (surface water) and/or segregation of aggregates (when the cement and aggregates start to separate), with the resulting concrete having reduced quality. The use of an aggregate with an undesirable gradation can result in a very harsh mix design with a very low slump, which cannot be readily made more workable by addition of reasonable amounts of water.
Workability can be measured by the Concrete Slump Test, a simplistic measure of the plasticity of a fresh batch of concrete following the ASTM C 143 or EN 12350-2 test standards. Slump is normally measured by filling an "Abrams cone" with a sample from a fresh batch of concrete. The cone is placed with the wide end down onto a level, non-absorptive surface. It is then filled in three layers of equal volume, with each layer being tamped with a steel rod in order to consolidate the layer. When the cone is carefully lifted off, the enclosed material will slump a certain amount due to gravity. A relatively dry sample will slump very little, having a slump value of one or two inches (25 or 50 mm). A relatively wet concrete sample may slump as much as six or seven inches (150 to 175 mm).
Slump can be increased by adding chemical admixtures such as mid-range or high-range water reducing agents (super-plasticizers) without changing the water-cement ratio. It is bad practice to add excessive water upon delivery to the jobsite, however in a properly designed mixture it is important to reasonably achieve the specified slump prior to placement as design factors such as air content, internal water for hydration/strength gain, etc. are dependent on placement at design slump values.
High-flow concrete, like self-consolidating concrete, is tested by other flow-measuring methods. One of these methods includes placing the cone on the narrow end and observing how the mix flows through the cone while it is gradually lifted.

Curing
In all but the least critical applications, care needs to be taken to properly cure concrete, and achieve best strength and hardness. This happens after the concrete has been placed. Cement requires a moist, controlled environment to gain strength and harden fully. The cement paste hardens over time, initially setting and becoming rigid though very weak, and gaining in strength in the days and weeks following. In around 3 weeks, over 90% of the final strength is typically reached though it may continue to strengthen for decades.[22]
Hydration and hardening of concrete during the first three days is critical. Abnormally fast drying and shrinkage due to factors such as evaporation from wind during placement may lead to increased tensile stresses at a time when it has not yet gained significant strength, resulting in greater shrinkage cracking. The early strength of the concrete can be increased by keeping it damp for a longer period during the curing process. Minimizing stress prior to curing minimizes cracking. High early-strength concrete is designed to hydrate faster, often by increased use of cement which increases shrinkage and cracking.
During this period concrete needs to be in conditions with a controlled temperature and humid atmosphere. In practice, this is achieved by spraying or ponding the concrete surface with water, thereby protecting concrete mass from ill effects of ambient conditions. The pictures to the right show two of many ways to achieve this, ponding – submerging setting concrete in water, and wrapping in plastic to contain the water in the mix.
Properly curing concrete leads to increased strength and lower permeability, and avoids cracking where the surface dries out prematurely. Care must also be taken to avoid freezing, or overheating due to the exothermic setting of cement (the Hoover Dam used pipes carrying coolant during setting to avoid damaging overheating). Improper curing can cause scaling, reduced strength, poor abrasion resistance and cracking.

Properties
Concrete has relatively high compressive strength, but significantly lower tensile strength, and as such is usually reinforced with materials that are strong in tension (often steel). The elasticity of concrete is relatively constant at low stress levels but starts decreasing at higher stress levels as matrix cracking develops. Concrete has a very low coefficient of thermal expansion, and as it matures concrete shrinks. All concrete structures will crack to some extent, due to shrinkage and tension. Concrete which is subjected to long-duration forces is prone to creep.
Tests can be made to ensure the properties of concrete correspond to specifications for the application.

Environmental concerns
Worldwide CO2 emissions and global change
The cement industry is one of two primary producers of carbon dioxide (CO2), creating up to 5 percent of worldwide emissions of this gas. The embodied carbon dioxide (ECO2) of a tonne of concrete varies with mix design and is in the range of: 75–176 kg CO2/tonne 0.075 - 0.176 tonne CO2/tonne[23]Cement manufacture contributes greenhouse gases both directly through the production of carbon dioxide when calcium carbonate is heated, producing lime and carbon dioxide[24], and also indirectly through the use of energy, particularly if the energy is sourced from fossil fuels. The cement industry produces 5% of global man-made CO2 emissions, of which 50 % is from the chemical process, and 40 % from burning fuel.[25]

CO2 uptake by concrete in the Biosphere 2 project building
A deficit of CO2 was observed in the mass balance of the gases in the closed atmosphere environments of the Biosphere 2 project. It was found that the respiration rate was faster than the photosynthesis resulting in a slow decrease of oxygen. An unresolved question accompanied the oxygen decline: the corresponding increase in carbon dioxide did not appear in the mass balance calculations. This concealed the underlying process until an investigation by Severinghaus et al. (1994) of Columbia University’s Lamont-Doherty Earth Observatory using isotopic analysis showed that carbon dioxide was reacting with exposed concrete inside Biosphere 2 to form calcium carbonate, thereby sequestering the carbon dioxide.[26][27] After being poured, concrete can absorb CO2 for up to 5 years until fully cured.
[edit]Surface runoff
Surface runoff, when water runs off impervious surfaces, such as non-porous concrete, can cause heavy soil erosion. Urban runoff tends to pick up gasoline, motor oil, heavy metals, trash and other pollutants from sidewalks, roadways and parking lots.

Civil Engineering Formulas Pocket Guide

hello.i am studying a degree in civil engineering. and in this blog i will be content with this string
civil string of important books you can download for free here. also interesting and useful articles and free.come to my blog and download free books